首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37742篇
  免费   5873篇
  国内免费   4052篇
化学   26607篇
晶体学   361篇
力学   2253篇
综合类   277篇
数学   4586篇
物理学   13583篇
  2024年   25篇
  2023年   754篇
  2022年   721篇
  2021年   1173篇
  2020年   1483篇
  2019年   1381篇
  2018年   1168篇
  2017年   1089篇
  2016年   1666篇
  2015年   1641篇
  2014年   2040篇
  2013年   2667篇
  2012年   3341篇
  2011年   3353篇
  2010年   2306篇
  2009年   2176篇
  2008年   2339篇
  2007年   2094篇
  2006年   1958篇
  2005年   1659篇
  2004年   1424篇
  2003年   1121篇
  2002年   1011篇
  2001年   854篇
  2000年   724篇
  1999年   832篇
  1998年   700篇
  1997年   642篇
  1996年   713篇
  1995年   629篇
  1994年   568篇
  1993年   487篇
  1992年   481篇
  1991年   386篇
  1990年   338篇
  1989年   253篇
  1988年   242篇
  1987年   203篇
  1986年   152篇
  1985年   162篇
  1984年   140篇
  1983年   118篇
  1982年   83篇
  1981年   60篇
  1980年   50篇
  1979年   34篇
  1978年   26篇
  1976年   27篇
  1975年   31篇
  1974年   23篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
21.
Lithium (Li)-based batteries are the dominant energy source for consumer electronics, grid storage, and electrified transportation. However, the development of batteries based on graphite anodes is hindered by their limited energy density. With its ultrahigh theoretical capacity (3860 mAh∙g−1), low redox potential (−3.04 V), and satisfactorily low density (0.54 g∙cm−3), Li metal is the most promising anode for next-generation high-energy-density batteries. Unfortunately, the limited cycling life and safety issues raised by dendrite growth, unstable solid electrolyte interphase, and "dead Li" have inhibited their practical use. An effective strategy is to develop a suitable lithiophilic matrix for regulating initial Li nucleation behavior and controlling subsequent Li growth. Herein, single-atom cobalt coordinated to oxygen sites on graphene (Co-O-G SA) is demonstrated as a Li plating substrate to efficiently regulate Li metal nucleation and growth. Owing to its dense and more uniform lithiophilic sites than single-atom cobalt coordinated to nitrogen sites on graphene (Co-N-G SA), high electronic conductivity, and high specific surface area (519 m2∙g−1), Co-O-G SA could significantly reduce the local current density and promote the reversibility of Li plating and stripping. As a result, the Co-O-G SA based Li anodes exhibited a high Coulombic efficiency of 99.9% at a current density of 1 mA∙cm−2 with a capacity of 1 mAh∙cm−2, and excellent rate capability (high current density of 8 mA∙cm−2). Even at a high plating capacity of 6 mAh∙cm−2, the Co-O-G SA electrode could stably cycle for an ultralong lifespan of 1300 h. In the symmetric battery, the Co-O-G SA based Li anode (Co-O-G SA/Li) possessed a stable voltage profile of 18 mV for 780 h at 1 mA∙cm−2, and even at a high current density of 3 mA∙cm−2, its overpotential maintained a small hysteresis of approximately 24 mV for > 550 h. Density functional theory calculations showed that the surface of Co-O-G SA had a stronger interaction with Li atoms with a larger binding energy, −3.1 eV, than that of Co-N-G SA (−2.5 eV), leading to a uniform distribution of metallic Li on the Co-O-G SA surface. More importantly, when matched with a sulfur cathode, the resulting Co-O-G SA/lithium sulfur full batteries exhibited a high capacity of 1002 mAh∙g−1, improved kinetics with a small polarization of 191 mV, and an ultralow capacity decay rate of 0.036% per cycle for 1000 cycles at 0.5C (1C = 1675 mA∙g−1) with a steady Coulombic efficiency of nearly 100%. Therefore, this work provides novel insights into the coordination environment of single atoms for the chemistry of Li metal anodes for high-energy-density batteries.  相似文献   
22.
Ding  Q.  Yao  M.  Wu  Sh.  Zeng  M.  Xue  N.  Wu  D.  Xu  J. 《Journal of Applied Spectroscopy》2022,89(4):712-718
Journal of Applied Spectroscopy - Based on partial least squares (PLS) analysis, the effects of different smoothing points and different preprocessing methods on the accuracy and precision of the...  相似文献   
23.
Fluorescence probes in the NIR-IIa region show drastically improved imaging owing to the reduced photon scattering and autofluorescence in biological tissues. Now, NIR-IIa polymer dots (Pdots) are developed with a dual fluorescence enhancement mechanism. First, the aggregation induced emission of phenothiazine was used to reduce the nonradiative decay pathways of the polymers in condensed states. Second, fluorescence quenching was minimized by different levels of steric hindrance to further boost the fluorescence. The resulting Pdots displayed a fluorescence QY of ca. 1.7 % in aqueous solution, suggesting an enhancement of ca. 21 times in comparison with the original polymer in tetrahydrofuran (THF) solution. Small-animal imaging by using the NIR-IIa Pdots exhibited a remarkable improvement in penetration depth and signal to background ratio, as confirmed by through-skull and through-scalp fluorescent imaging of the cerebral vasculature of live mice.  相似文献   
24.
The looming global energy crisis and ever-increasing energy demands have catalyzed the development of renewable energy storage systems. In this regard, supercapacitors (SCs) have attracted widespread attention because of their advantageous attributes such as high power density, excellent cycle stability, and environmental friendliness. However, SCs exhibit low energy density and it is important to optimize electrode materials to improve the overall performance of these devices. Among the various electrode materials available, spinel nickel cobaltate (NiCo2O4) is particularly interesting because of its excellent theoretical capacitance. Based on the understanding that the performances of the electrode materials strongly depend on their morphologies and structures, in this study, we successfully synthesized NiCo2O4 nanosheets on Ni foam via a simple hydrothermal route followed by calcination. The structures and morphologies of the as-synthesized products were characterized by X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller (BET) surface area analysis, and the results showed that they were uniformly distributed on the Ni foam support. The surface chemical states of the elements in the samples were identified by X-ray photoelectron spectroscopy. The as-synthesized NiCo2O4 products were then tested as cathode materials for supercapacitors in a traditional three-electrode system. The electrochemical performances of the NiCo2O4 electrode materials were studied and the area capacitance was found to be 1.26 C·cm-2 at a current density of 1 mA·cm-2. Furthermore, outstanding cycling stability with 97.6% retention of the initial discharge capacitance after 10000 cycles and excellent rate performance (67.5% capacitance retention with the current density from 1 to 14 mA·cm-2) were achieved. It was found that the Ni foam supporting the NiCo2O4 nanosheets increased the conductivity of the electrode materials. However, it is worth noting that the contribution of nickel foam to the areal capacitance of the electrode materials was almost zero during the charge and discharge processes. To further investigate the practical application of the as-synthesized NiCo2O4 nanosheets-based electrode, a device was assembled with the as-prepared samples as the positive electrode and active carbon (AC) as the negative electrode. The assembled supercapacitor showed energy densities of 0.14 and 0.09 Wh·cm-3 at 1.56 and 4.5 W·cm-3, respectively. Furthermore, it was able to maintain 95% of its initial specific capacitance after 10000 cycles. The excellent electrochemical performance of the NiCo2O4 nanosheets could be ascribed to their unique spatial structure composed of interconnected ultrathin nanosheets, which facilitated electron transportation and ion penetration, suggesting their potential applications as electrode materials for high performance supercapacitors. The present synthetic route can be extended to other ternary transition metal oxides/sulfides for future energy storage devices and systems.  相似文献   
25.
Three one-dimensional ladder-like coordination polymers consisting of Cd6 metalloring as the building unit, {[Cd4LCl4]·3H2O}n ( 1 ), {[Cd3L(ClO4)(H2O)]ClO4·3H2O}n ( 2 ), and {[Cd6(L)2(NO3)2(CH3OH)(H2O)](NO3)2·2CH3OH·5H2O}n ( 3 ), were solvothermally constructed from a carboxylic functionalized bisazamacrocyclic ligand 4,4′-bis((4,7-bis(2-carboxyethyl)-1,4,7-triazacyclonon-1-yl)methyl)-1,1′-biphenyl (H4L). These compounds dispersed in ethanol show the multiple emissions originating from the monomeric and intramolecularly overlapping biphenyl moieties which could be sensitively quenched by picric acid (PA) and 4-nitrophenol (4-NP) through the effective fluorescence resonance energy transfer process. The differential fluorescent responses of each compound on exposure to PA and 4-NP individually make the convenient ratiometric discrimination of two analytes based on the fluorescent intensity ratio (I320/I360) attainable, and 1 and 2 as ratiometric chemosensors for PA present a broad linear detection range from 4 to 300 μM with detection limits of 0.84 and 0.93 μM, respectively. Furthermore, the blue light emission of 1 under an ultraviolet lamp could be selectively quenched by PA even in the presence of all other interfering nitroaromatic pollutants, which empowers the fast visual detection of PA by naked eye.  相似文献   
26.
Two nickel complexes, [Ni(tpen)](ClO4)2.0.5CH3COCH3 ( 1 ) and [Ni(tpbn)](ClO4)2 ( 2 ), of tetrapyridyl ligands N,N,N′,N′-tetrakis(2-pyridyl-methyl)-1,2-ethanediamine (tpen) and N,N,N′,N′-tetrakis(2-pyridyl-methyl)-1,4-butanediamine (tpbn) were prepared and their catalysis for water oxidation reaction (WOR) studied. In 0.1 M phosphate buffer solution (PBS) of pH 8.0, complex 1 is a homogeneous molecular catalyst with an overpotential of ~440 mV and a Faradaic efficiency of 89%. At pH ≥ 9.0, complex 1 degraded gradually during the catalytic process and formed NiOx composite (nickel oxide with general formula NixOyHz) active for WOR. In contrast, complex 2 deteriorated under measured conditions (pH 8.0–12.0) and formed NiOx composite active for WOR. The NiOx composite derived from 1 in 0.1 M PBS at pH 11.0 showed an activity with an overpotential of ~500 mV, a Tafel slope of ~90 mV/decade and a Faradaic efficiency of 97%. Mechanisms were proposed for water oxidation catalyzed by 1 and 2 . This work revealed that the catalytic activity of the nickel complexes was related to the flexibility of the tetrapyridyl ligands and the adaptability of the coordination sphere of the nickel(II) center.  相似文献   
27.
Journal of Radioanalytical and Nuclear Chemistry - In this study, the halloysite nanotubes was characterized and the adsorption of Th(IV) and U(VI) on halloysite nanotubes was investigated as a...  相似文献   
28.
Since most of the control strategies for air-breathing hypersonic vehicles (AHVs) concentrate on the control-oriented models built at/around a specific working point, it is somewhat hard to extend them to the broader flight envelop. Aiming at the above deficiency, this paper formulates the dynamics of AHVs as several sub-models, which switch to each other in accordance with the flight condition and make up of the control-oriented switched model (COSM). With the aid of the COSM, two adaptive tracking controllers are proposed for the purposes of velocity tracking and altitude tracking, sequentially. By utilizing neural networks and designing robust control laws, the possible changes on the force and moment coefficients in the COSM are successfully handled. The time-varying inertia parameters of AHVs are also considered at design level. It is worth emphasizing that while this strategy is developed based on a switched model, the resulting control algorithm is continuous with no connection to the switching signal. Analysis indicates that both velocity and altitude tracking errors remain small within the whole flight envelop, which is further confirmed by a simulation study.  相似文献   
29.
The use of honeybee venom in traditional medicine is increasing due to its unexpected beneficial effects in the treatment of diseases. In this study, a simple and environmentally friendly sample preparation procedure was developed to quantify five biogenic amines—histamine, 5-hydroxytryptamine, dopamine, adrenaline, and noradrenaline—in honeybee venom using high-performance liquid chromatography tandem mass spectrometry. The instrument and sample preparation method were optimized to achieve stable, sensitive, and accurate quantification of the five biogenic amines. The peak purities of five biogenic amines in bee venom were examined using a diode array detector to ensure that endogenous impurities will not interfere with biogenic amines during the chromatographic separation procedure. The correlation coefficient of each compound was higher than 0.998 in the range of 0.5–1000 ng/mL. The limits of detection and quantification of the developed method ranged between 0.09 and 0.17, and 0.3 and 0.59 μg/g, respectively. The average recoveries of spiked biogenic amines with different concentrations were higher than 70.95%, and the intra- and intermediate-day precisions were lower than 7.51% and 10.17%, respectively. The carry-over between each injection and the stability of the target analytes were also evaluated to ensure the effectiveness of this method. The data obtained are presented in various formats, including boxplot, heat map, and principal component analysis diagram, to visualize the differences in the biogenic amine contents of the honeybee venoms from different subspecies. This method hopes to provide the opportunity to distinguish the bee venom produced by different subspecies.  相似文献   
30.
Hongjingtian injection is made from Rhodiola wallichiana and used in the treatment of stable angina pectoris associated with coronary heart disease. In this study, the chemical constituents in Hongjingtian injection were comprehensively studied using liquid chromatography quadrupole time‐of‐flight mass spectrometry. A total of 49 compounds were identified or assumed, including 10 organic acids, nine phenylethanoids, 10 phenylpropanoids, two flavonoid glycosides, seven monoterpene glycosides, seven octylglycosides and four other types of compounds. The structures of seven compounds were confirmed by comparing their retention times, MS and UV spectra with the corresponding authentic standards. Amongst the 49 compounds, 35 were firstly found in R. wallichiana, while they have been reported in other species of the genus Rhodiola, including Rhodiola crenulata, Rhodiola sacra, Rhodiola rosea and Rhodiola kirilowii. The possible fragmentation pathways in the mass spectrometry of the major types of compounds are proposed and summarized. Our study demonstrates a rapid method for characterizing the chemical constituents present in the Hongjingtian injection, which could also be applied to the identification of chemical constituents in other TCM formulae containing R. wallichiana.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号